Stimulated Heterogeneous Nucleation of Supercooled Liquid H2 Droplets

نویسندگان

  • E. L. Knuth
  • S. Schaper
  • J. P. Toennies
چکیده

The properties of H2 droplets formed by condensation in a supersonic freejet were probed by the capture and coagulation of CO molecules for the purpose of determining whether the droplets are liquid or solid. The CO was introduced into the H2 droplets by passing the droplet beam through a scattering chamber containing CO at room temperature and various pressures. Reduction of droplet size as a result of droplet collisions with CO molecules was determined by measuring the droplet size downstream from the scattering region for several different values of the CO pressure. The size of the embedded clusters formed by coagulation of the captured CO molecules was determined from the mass spectra measured for several values of CO pressure in the scattering chamber. A comparison of (a) the observed dramatic loss of about 7% of the H2 molecules from a droplet after between 2 and 8 collisions with (b) the loss predicted due to evaporation/sublimation in the event of solidification is taken to be compelling evidence that the H2 droplets were liquid prior to their collisions with the CO scattering gas. The observed dependence of the maximum CO cluster size on the collision frequency appears to indicate that a sufficiently high collision frequency will liquify a droplet which otherwise would be solid. This observation supports the conclusion that the H2 droplets are solidified as a consequence of heterogeneous nucleation induced by the captured CO molecules. The evidence in favor of a liquid state, coupled with the estimated 4K droplet temperature, suggest strongly that the supercooled H2 droplets are superfluid.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mid-tropospheric supercooled liquid water observation consistent with nucleation induced by a mountain lee wave

[1] A case study relative to the observation of unexpected liquid water in an apparently cloudless atmosphere is presented. Microwave radiometer profiler observations on 14 April 2008 at Boulder, Colorado, USA, showed an increase in the liquid water path with values higher than 0.05 mm and corresponding relative humidity saturation from 4.75 to 6.75 km above the ground level in profiles retriev...

متن کامل

A technique for quantifying heterogeneous ice nucleation in microlitre supercooled water droplets

A technique for quantifying heterogeneous ice nucleation in microlitre supercooled water droplets T. F. Whale, B. J. Murray, D. O’Sullivan, N. S. Umo, K. J. Baustian, J. D. Atkinson, and G. J. Morris School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK Asymptote Ltd., St. John’s Innovation Centre, Cowley Road, Cambridge, CB4 0WS, UK now at: Institute for Atmospheric and Clim...

متن کامل

Surface crystallization of supercooled water in clouds.

The process by which liquid cloud droplets homogeneously crystallize into ice is still not well understood. The ice nucleation process based on the standard and classical theory of homogeneous freezing initiates within the interior volume of a cloud droplet. Current experimental data on homogeneous freezing rates of ice in droplets of supercooled water, both in air and emulsion oil samples, sho...

متن کامل

Heterogeneous freezing of water droplets containing kaolinite particles

Clouds composed of both ice particles and supercooled liquid water droplets exist at temperatures above ∼236 K. These mixed phase clouds, which strongly impact climate, are very sensitive to the presence of solid particles that can catalyse freezing. In this paper we describe experiments to determine the conditions at which the clay mineral kaolinite nucleates ice when immersed within water dro...

متن کامل

Stochastic kinetics reveal imperative role of anisotropic interfacial tension to determine morphology and evolution of nucleated droplets in nematogenic films

For isotropic fluids, classical nucleation theory predicts the nucleation rate, barrier height and critical droplet size by ac- counting for the competition between bulk energy and interfacial tension. The nucleation process in liquid crystals is less understood. We numerically investigate nucleation in monolayered nematogenic films using a mesoscopic framework, in par- ticular, we study the mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001